Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
1.
J Fish Dis ; 46(12): 1343-1355, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37635442

RESUMO

Spring viraemia of carp (SVC) is an infectious disease responsible for severe economic losses for various cyprinid species, particularly common carp (Cyprinus carpio carpio). The causative agent is the Rhabdovirus carpio or SVC virus (SVCV), a member of the Sprivivirus genus, within the Rhabdoviridae family. Phylogenetically, SVCV is divided into four genogroups (SVCV a, SVCV b, SVCV c and SVCV d), which have a reasonable correlation with the geographical distribution of the virus. In the late twentieth century, the disease was widespread in Serbian aquaculture and caused massive deaths in common carp. This study aimed to molecularly characterize the circulating SVCV isolates in Serbia over a 17-year period. The genetic relationships between 21 SVCV isolates from common carp and rainbow trout in Serbia between 1992 and 2009 were determined based on the partial nucleotide sequence of the glycoprotein gene (G gene). The phylogenetic analysis showed that the dominant SVCV isolates in Serbia belong to the SVCV d genogroup, with only one isolate belonging to genogroup SVCV b. The SVCV strains circulating in Serbia exhibited high homogeneity, as several isolates shared 100% similarity within these genogroups. Most Serbian isolates belonged to SVCV d1 and d2 subgroups, with one isolate notably different and included in a new subgroup SVCV d5. Understanding the SVCV genetic variants circulating in Serbia would be helpful in future epizootic investigations.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Viremia , Filogenia , Sérvia/epidemiologia , Doenças dos Peixes/epidemiologia , Infecções por Rhabdoviridae/epidemiologia , Infecções por Rhabdoviridae/veterinária
2.
Proc Biol Sci ; 290(1997): 20230183, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37072038

RESUMO

We investigated the transmission dynamics of lyssavirus in Myotis myotis and Myotis blythii, using serological, virological, demographic and ecological data collected between 2015 and 2022 from two maternity colonies in northern Italian churches. Despite no lyssavirus detection in 556 bats sampled over 11 events by reverse transcription-polymerase chain reaction (RT-PCR), 36.3% of 837 bats sampled over 27 events showed neutralizing antibodies to European bat lyssavirus 1, with a significant increase in summers. By fitting sets of mechanistic models to seroprevalence data, we investigated factors that influenced lyssavirus transmission within and between years. Five models were selected as a group of final models: in one model, a proportion of exposed bats (median model estimate: 5.8%) became infectious and died while the other exposed bats recovered with immunity without becoming infectious; in the other four models, all exposed bats became infectious and recovered with immunity. The final models supported that the two colonies experienced seasonal outbreaks driven by: (i) immunity loss particularly during hibernation, (ii) density-dependent transmission, and (iii) a high transmission rate after synchronous birthing. These findings highlight the importance of understanding ecological factors, including colony size and synchronous birthing timing, and potential infection heterogeneities to enable more robust assessments of lyssavirus spillover risk.


Assuntos
Quirópteros , Infecções por Rhabdoviridae , Humanos , Gravidez , Animais , Feminino , Infecções por Rhabdoviridae/epidemiologia , Infecções por Rhabdoviridae/veterinária , Estudos Soroepidemiológicos , Anticorpos Antivirais , RNA Viral/análise
3.
Vet Med Sci ; 8(6): 2411-2417, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36084261

RESUMO

BACKGROUND: Infectious haematopoietic necrosis (IHN) is known as one of the most contagious systemic viral diseases in salmonids which can lead to significant mortality rates and negative impacts on the salmonid farming industry. Infectious haematopoietic necrosis virus (IHNV) was first detected in rainbow trout (Oncorhynchus mykiss) farms in Iran in 2003. OBJECTIVES: We conducted the present study to determine the detection of IHN genotypes in rainbow trout (O. mykiss) in farms in the central parts of Iran, using molecular and phylogenetic techniques. METHODS: Samples were collected from fries exhibiting clinical signs such as darkening of the skin, abdominal swelling, and loss of appetite. Phylogenetic analysis was performed by the neighbour-joining method, using MEGA 5.1 software. For phylogenetic analysis and genotyping of IHNV from central parts of Iran, the sequences of the glycoprotein gene were determined for two Iranian isolates (Jahad-UT1 and Jahad-UT2). RESULTS: Phylogenetic analysis revealed that the detected strains (Jahad-UT1 and Jahad-UT2 isolates) are closely related (97.23%-100%) to European isolates within genogroup 'E'. CONCLUSIONS: This finding indicates that Jahad-UT1 and Jahad-UT2 isolates have been widely transferred to Iran from European countries. Moreover, the nucleotide diversity of these Iranian isolates showed a close relationship with the North American and Asian isolates, although the Iranian isolates were collected from a smaller geographical area and within a shorter time period between 2014 and 2015.


Assuntos
Doenças dos Peixes , Vírus da Necrose Hematopoética Infecciosa , Oncorhynchus mykiss , Infecções por Rhabdoviridae , Animais , Vírus da Necrose Hematopoética Infecciosa/genética , Irã (Geográfico)/epidemiologia , Filogenia , Genótipo , Doenças dos Peixes/epidemiologia , Infecções por Rhabdoviridae/epidemiologia , Infecções por Rhabdoviridae/veterinária , Glicoproteínas/genética
4.
J Fish Dis ; 45(12): 1831-1837, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35962585

RESUMO

Variants of perch rhabdovirus (PRV) circulate across European percid farms via the fish trade. To trace their circulation, they are usually isolated by cell culture and subsequently identified genetically by sequencing partial or complete genes. Here, a newly developed nested PCR-based method was used to amplify and sequence the complete N and P genes directly from clinical samples obtained during an outbreak on a farm as well as from four batches of fish sampled from two other farms in another country. In an attempt to trace the origin of the five detected viruses, their N and P sequences were concatenated and compared with related viruses. One virus found in pike-perch was highly related to a virus isolated in 2016 in Belgium. Two other viruses detected on a single farm were distinct from one another, with one being almost identical to another virus isolated in 2016 in Belgium and the other being more closely related to a subgroup with different origins, France and Belgium. Two other viruses found in perch from a third farm were identical and were more related to a subgroup of viruses isolated in France. Identifying variants by a direct PCR approach will help to prevent further dissemination in farms.


Assuntos
Doenças dos Peixes , Percas , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Infecções por Rhabdoviridae/epidemiologia , Infecções por Rhabdoviridae/veterinária , Doenças dos Peixes/epidemiologia , Filogenia , Rhabdoviridae/genética
5.
Viruses ; 14(7)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35891542

RESUMO

Bat lyssaviruses were identified in Taiwan's bat population during 2016-2017. The lyssavirus surveillance system was continuously conducted to understand the epidemiology. Through this system, the found dead bats were collected for lyssavirus detection by direct fluorescent antibody test and reverse transcription polymerase chain reaction. Three bats were identified as positive during 2018-2021. A novel lyssavirus, designated as Taiwan bat lyssavirus 2, was detected in a Nyctalus plancyi velutinus. This lyssavirus had less than 80% nucleotide identity in the nucleoprotein (N) gene with other lyssavirus species, forming a separate branch in the phylogenetic analysis. The other two cases were identified in Pipistrellus abramus (Japanese pipistrelles); they were identified to be similar to the former lyssavirus identified in 2016-2017, which was renominated as Taiwan bat lyssavirus 1 (TWBLV-1) in this study. Even though one of the TWBLV-1 isolates showed high genetic diversity in the N gene compared with other TWBLV-1 isolates, it may be a TWBLV-1 variant but not a new species based on its high amino acid identities in the nucleoprotein, same host species, and same geographic location as the other TWBLV-1.


Assuntos
Quirópteros , Lyssavirus , Infecções por Rhabdoviridae , Animais , Nucleoproteínas/genética , Filogenia , Infecções por Rhabdoviridae/epidemiologia , Infecções por Rhabdoviridae/veterinária , Taiwan/epidemiologia
6.
J Aquat Anim Health ; 34(2): 92-97, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35527365

RESUMO

In July of 2018 and 2019, wild fish health surveys were conducted along the Wisconsin and Minnesota portions of the upper Mississippi River. Spring viremia of carp virus (SVCV) was isolated from Common Carp Cyprinus carpio as well as a newly identified host species, the Quillback Carpiodes cyprinus. Sanger sequencing of the gene encoding for the G protein revealed a high similarity of the Quillback isolate to various SVCV isolates identified from Common Carp that were collected during earlier wild fish health surveys and mortality events in the USA. Despite annual monitoring, this virus has been infrequently identified. The speculative role of native fish and invertebrates in allowing the virus to persist for long periods without detection is discussed.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Filogenia , Rhabdoviridae/genética , Infecções por Rhabdoviridae/diagnóstico , Infecções por Rhabdoviridae/epidemiologia , Infecções por Rhabdoviridae/veterinária , Rios , Viremia/veterinária
7.
Aust Vet J ; 100(4): 172-180, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35043394

RESUMO

Australian Bat lyssaviruses (ABLV) are known to be endemic in bats in New South Wales (NSW), Australia. These viruses pose a public health risk because they cause a fatal disease in humans that is indistinguishable from classical rabies infection. All potentially infectious contact between bats and humans, or between bats and domestic animals, should be investigated to assess the risk of virus transmission by submitting the bat for testing to exclude ABLV infection. The aim of this study was to establish the prevalence of ABLV infection in bats submitted for testing in NSW and to document any trends or changes in submission and bat details. We examined all submissions of samples for ABLV testing received by the NSW Department of Primary Industries Virology Laboratory for the 13-year period between 1 May 2008 and 30 April 2021. Fifty-four (4.9%) ABLV-infected bats were detected, with some clustering of positive results. This is greater than the prevalence estimated from wild-caught bats. All bats should be considered a potential source of ABLV. In particular, flying-foxes with rabies-like clinical signs, and with known or possible human interaction, pose the highest public health risk because they are more likely to return a positive result for ABLV infection. This review of ABLV cases in NSW will help veterinarians to recognise the clinical presentations of ABLV infection in bats and emphasises the importance of adequate rabies vaccination for veterinarians.


Assuntos
Quirópteros , Lyssavirus , Raiva , Infecções por Rhabdoviridae , Animais , Austrália/epidemiologia , New South Wales/epidemiologia , Raiva/epidemiologia , Raiva/veterinária , Infecções por Rhabdoviridae/epidemiologia , Infecções por Rhabdoviridae/veterinária
8.
Transbound Emerg Dis ; 69(2): 337-348, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33417745

RESUMO

Infectious hematopoietic necrosis virus (IHNV) is a major fish viral pathogen causing acute clinical disease and death in a variety of salmonids. IHNV isolates have been classified into five major genogroups according to the phylogenetic analysis of partial G gene fragments or the complete G gene sequence: U, M, E, L and J. Genogroup U strains have been reported in North America and Japan prior to 1982, and genogroup J is the only genogroup that has been reported in China. Here, one of IHNV strain (BjLL) was isolated from a local farm in China and were characterized in this study. The homogenate tissues of infected fry induced IHNV-positive cytopathic effects in epithelioma papulosum cyprinid (EPC) cells that were confirmed by RT-PCR and sequencing. The complete genome sequence of BjLL comprised 11,129 nucleotides, which had been submitted to GenBank (accession no. MF509592). By the sequence comparison and phylogenetic analysis for the G gene sequence of BjLL with 51 reference sequences in GenBank, we confirmed that this Chinese isolate belonged to genogroup U. Furthermore, virus exposure experiments with juvenile rainbow trout were conducted to assess the virulence and pathogenicity of BjLL. Compared with GS-2014 of genogroup J, BjLL was an obviously less virulent strain that could result in lower mortality. Besides, typical clinical symptoms and pathological damages could be seen in fish following infection of BjLL. The present study is the first report of genogroup U IHNV infection in China and will provide essential information for future studies on pathogenesis of IHNV BjLL and development of efficient control strategies.


Assuntos
Doenças dos Peixes , Vírus da Necrose Hematopoética Infecciosa , Oncorhynchus mykiss , Infecções por Rhabdoviridae , Animais , Doenças dos Peixes/epidemiologia , Genótipo , Vírus da Necrose Hematopoética Infecciosa/genética , Filogenia , Infecções por Rhabdoviridae/epidemiologia , Infecções por Rhabdoviridae/veterinária , Virulência/genética
9.
Clin Infect Dis ; 74(3): 461-466, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33991184

RESUMO

BACKGROUND: Inaccurate diagnosis of encephalitis is a major issue as immunosuppressive treatments can be deleterious in case of viral infection. The European bat lyssavirus type 1 (EBLV-1), a virus related to rabies virus, is endemic in European bats. No human case has yet been reported in Western Europe. A 59-year-old patient without specific past medical history died from encephalitis. A colony of bats lived in an outbuilding of his house. No diagnosis was made using standard procedures. METHODS: We used a next generation sequencing (NGS) based transcriptomic protocol to search for pathogens in autopsy samples (meninges and brain frontal lobe). Results were confirmed by polymerase chain reaction (PCR) and by antibody testing in serum. Immunochemistry was used to characterize inflammatory cells and viral antigens in brain lesions. Cells and mice were inoculated with brain extracts for virus isolation. RESULTS: The patient's brain lesions were severe and diffuse in white and gray matter. Perivascular inflammatory infiltrates were abundant and rich in plasma cells. NGS identified European bat lyssavirus type 1a in brain, which was confirmed by PCR. A high titer of neutralizing antibodies was found in serum. No viral antigen was detected, and the virus could not be isolated by cell culture or by mouse inoculation. CONCLUSIONS: The patient died from European bat lyssavirus type 1a infection. NGS was key to identifying this unexpected viral etiology in an epidemiological context that did not suggest rabies. People exposed to bats should be strongly advised to be vaccinated with rabies vaccines, which are effective against EBLV-1.


Assuntos
Quirópteros , Encefalite , Lyssavirus , Raiva , Infecções por Rhabdoviridae , Animais , Europa (Continente)/epidemiologia , Humanos , Lyssavirus/genética , Camundongos , Raiva/diagnóstico , Raiva/veterinária , Infecções por Rhabdoviridae/diagnóstico , Infecções por Rhabdoviridae/epidemiologia , Infecções por Rhabdoviridae/veterinária
10.
Viruses ; 13(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34696409

RESUMO

Lyssaviruses are an important genus of zoonotic viruses which cause the disease rabies. The United Kingdom is free of classical rabies (RABV). However, bat rabies due to European bat lyssavirus 2 (EBLV-2), has been detected in Daubenton's bats (Myotis daubentonii) in Great Britain since 1996, including a fatal human case in Scotland in 2002. Across Europe, European bat lyssavirus 1 (EBLV-1) is commonly associated with serotine bats (Eptesicus serotinus). Despite the presence of serotine bats across large parts of southern England, EBLV-1 had not previously been detected in this population. However, in 2018, EBLV-1 was detected through passive surveillance in a serotine bat from Dorset, England, using a combination of fluorescent antibody test, reverse transcription-PCR, Sanger sequencing and immunohistochemical analysis. Subsequent EBLV-1 positive serotine bats have been identified in South West England, again through passive surveillance, during 2018, 2019 and 2020. Here, we confirm details of seven cases of EBLV-1 and present similarities in genetic sequence indicating that emergence of EBLV-1 is likely to be recent, potentially associated with the natural movement of bats from the near continent.


Assuntos
Quirópteros/virologia , Lyssavirus/patogenicidade , Animais , Lyssavirus/genética , Raiva/virologia , Infecções por Rhabdoviridae/epidemiologia , Infecções por Rhabdoviridae/virologia , Reino Unido/epidemiologia
11.
Viruses ; 13(9)2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34578350

RESUMO

Pathogen discovery contributes to our knowledge of bat-borne viruses and is linked to the heightened interest globally in bats as recognised reservoirs of zoonotic agents. The transmission of lyssaviruses from bats-to-humans, domestic animals, or other wildlife species is uncommon, but interest in these pathogens remains due to their ability to cause an acute, progressive, invariably fatal encephalitis in humans. Consequently, the detection and characterisation of bat lyssaviruses continues to expand our knowledge of their phylogroup definition, viral diversity, host species association, geographical distribution, evolution, mechanisms for perpetuation, and the potential routes of transmission. Although the opportunity for lyssavirus cross-species transmission seems rare, adaptation in a new host and the possibility of onward transmission to humans requires continued investigation. Considering the limited efficacy of available rabies biologicals it is important to further our understanding of protective immunity to minimize the threat from these pathogens to public health. Hence, in addition to increased surveillance, the development of a niche pan-lyssavirus vaccine or therapeutic biologics for post-exposure prophylaxis for use against genetically divergent lyssaviruses should be an international priority as these emerging lyssaviruses remain a concern for global public health.


Assuntos
Saúde Pública , Infecções por Rhabdoviridae/terapia , Animais , Quirópteros/virologia , Encefalite/terapia , Encefalite/virologia , Humanos , Itália , Lyssavirus/classificação , Raiva , Infecções por Rhabdoviridae/epidemiologia , Infecções por Rhabdoviridae/virologia , Zoonoses/virologia
12.
Vopr Virusol ; 66(4): 259-268, 2021 09 17.
Artigo em Russo | MEDLINE | ID: mdl-34545718

RESUMO

The virologists' attention to bats (Сhiroptera) changed in the late 20th century as the concept of emerging infections grew in popularity. Since the beginning of the COVID-19 pandemic, the number of publications on bat viruses has increased profoundly.History of the problem; biodiversity of Chiroptera and related viruses; medical and veterinary significance of some viral genera and subgenera (Lyssavirus, Henipavirus, Marburgvirus, Ebolavirus, Sarbecovirus, Merbecovirus), as well as problems of bat protection, are addressed in a concise form. Literature search was carried out in electronic databases, mainly for the period of 2000-2021. Publications in Russian that are poorly represented in English-language reviews are also included. The purpose of the review is to substantiate the importance of an interdisciplinary approach in the context of increased interest in the study of viral infections in bats. This review was written for researchers who have not previously dealt with this problem.Since the beginning of this century, the number of known virus species associated with bats has increased by an order of magnitude (>200). The families Rhabdoviridae, Coronaviridae, Paramyxoviridae are in the first ranks according to the number of findings, and the highest diversity of viruses has been established for the families Vespertilionidae, Pteropodidae, Molossidae. Interdisciplinary cooperation positively influences the efficiency, biological safety and practical significance of the ongoing research. The best results were achieved by multidisciplinary teams with good cross-training in several specialties. Many papers emphasize the need to balance health and conservation interests.The analysis of scientific publications indicates a change in research approaches in this area: from collecting individual facts within the framework of narrow specialties to a comprehensive assessment of new knowledge from ecological, evolutionary and socio-economic positions. Results of the research emphasize the need to maintain complex approaches addressing public health needs and environmental protection. The importance of bat-borne viral infections determines the necessity for correction and interdepartmental coordination of scientific research and surveillance of wildlife zoonoses in the Russian Federation.


Assuntos
COVID-19 , Quirópteros/virologia , Infecções por Paramyxoviridae , Paramyxoviridae , Infecções por Rhabdoviridae , Rhabdoviridae , SARS-CoV-2 , Zoonoses , Animais , COVID-19/epidemiologia , COVID-19/transmissão , Humanos , Infecções por Paramyxoviridae/epidemiologia , Infecções por Paramyxoviridae/transmissão , Infecções por Rhabdoviridae/epidemiologia , Infecções por Rhabdoviridae/transmissão , Zoonoses/epidemiologia , Zoonoses/virologia
13.
Viruses ; 13(8)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34452403

RESUMO

Lyssaviruses are the causative agents for rabies, a zoonotic and fatal disease. Bats are the ancestral reservoir host for lyssaviruses, and at least three different lyssaviruses have been found in bats from Germany. Across Europe, novel lyssaviruses were identified in bats recently and occasional spillover infections in other mammals and human cases highlight their public health relevance. Here, we report the results from an enhanced passive bat rabies surveillance that encompasses samples without human contact that would not be tested under routine conditions. To this end, 1236 bat brain samples obtained between 2018 and 2020 were screened for lyssaviruses via several RT-qPCR assays. European bat lyssavirus type 1 (EBLV-1) was dominant, with 15 positives exclusively found in serotine bats (Eptesicus serotinus) from northern Germany. Additionally, when an archived set of bat samples that had tested negative for rabies by the FAT were screened in the process of assay validation, four samples tested EBLV-1 positive, including two detected in Pipistrellus pipistrellus. Subsequent phylogenetic analysis of 17 full genomes assigned all except one of these viruses to the A1 cluster of the EBLV-1a sub-lineage. Furthermore, we report here another Bokeloh bat lyssavirus (BBLV) infection in a Natterer's bat (Myotis nattereri) found in Lower Saxony, the tenth reported case of this novel bat lyssavirus.


Assuntos
Quirópteros/virologia , Reservatórios de Doenças/veterinária , Monitoramento Epidemiológico/veterinária , Lyssavirus/genética , Lyssavirus/isolamento & purificação , Infecções por Rhabdoviridae/veterinária , Animais , Reservatórios de Doenças/virologia , Feminino , Alemanha/epidemiologia , Lyssavirus/classificação , Masculino , Filogenia , RNA Viral/genética , Estudos Retrospectivos , Infecções por Rhabdoviridae/epidemiologia , Zoonoses Virais/epidemiologia , Zoonoses Virais/transmissão
14.
Vector Borne Zoonotic Dis ; 21(7): 552-555, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34010076

RESUMO

The family Rhabdoviridae contains diverse viruses, including vector-borne and nonvector-borne viruses, some that are human pathogens, including rabies virus and also nonpathogenic viruses. Bats, which are a known reservoir of viruses with zoonotic potential including coronaviruses, also carry multiple rhabdoviruses such as but not limited to lyssaviruses. We collected samples from 193 insectivorous and frugivorous bats in the Republic of the Congo and tested them for rhabdovirus RNA. Four samples were found positive for viral RNA representing sequences of four different, not previously described rhabdoviruses. Although phylogenetic and taxonomic placement of the novel sequences is uncertain, similarities with previously detected rhabdovirus sequences in bats suggest that these could represent vertebrate viruses. Considering the pathogenic risks some rhabdoviruses pose for humans, these results highlight the need for more research and surveillance regarding rhabdoviruses and bats.


Assuntos
Quirópteros , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Congo , Filogenia , Rhabdoviridae/genética , Infecções por Rhabdoviridae/epidemiologia , Infecções por Rhabdoviridae/veterinária
15.
Viruses ; 13(3)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802100

RESUMO

Novirhabdoviruses cause large epizootics and economic losses of farmed trout. In this study, we surveyed Viral hemorrhagic septicemia virus and Infectious hematopoietic and necrosis virus (VHSV and IHNV) through both monitoring and investigation of clinical outbreaks reported by farmers in the regions with major rainbow trout production in Iran from 2015 to 2019. RT-PCR assays of the kidney samples and cell culture (EPC/FHM cells) samples confirmed the presence of the viruses, with 9 VHSV and 4 IHNV isolates, in both endemic and new areas of Iran. Sequence analysis of the G gene revealed that VHSV isolates belonged to genogroup Ia, and IHNV isolates were clustered into genogroup E, both typical for isolates from European countries. A haplotype analysis based on non-homologous amino acids of the G gene supports the emergence of two lineages of IHNV from clade 1 (E-1), as well as VHSV clade 2 (Ia-2) of the European genogroups, confirming that VHSV and IHNV isolates in Iran, have originated from Europe possibly via imported eggs.


Assuntos
Doenças dos Peixes/epidemiologia , Vírus da Necrose Hematopoética Infecciosa/isolamento & purificação , Oncorhynchus mykiss/virologia , Infecções por Rhabdoviridae/epidemiologia , Infecções por Rhabdoviridae/veterinária , Animais , Sequência de Bases , Surtos de Doenças , Europa (Continente)/epidemiologia , Doenças dos Peixes/virologia , Pesqueiros , Genótipo , Haplótipos/genética , Vírus da Necrose Hematopoética Infecciosa/genética , Irã (Geográfico)/epidemiologia , Epidemiologia Molecular , Novirhabdovirus/genética , Novirhabdovirus/isolamento & purificação , Filogenia , Análise de Sequência de DNA
16.
Prev Vet Med ; 190: 105338, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33831815

RESUMO

Spring viremia of carp virus (SVCV) causes a systemic hemorrhagic disease that poses a significant risk to wild and cultured fish and is listed as notifiable by the World Organization for Animal Health. Validated molecular diagnostic tools for SVCV are required to accurately describe and analyze the ecology of the virus. Here, the diagnostic specificity (DSp) and sensitivity (DSe) (i.e. accuracy) of three SVCV diagnostic tests - 2 reverse transcription quantitative polymerase chain reaction (RT-qPCR) assays Q1G and Q2N and virus isolation by cell culture (VI) - were evaluated using 2-class latent class models run in maximum likelihood (ML) and Bayesian frameworks. Virus-free or experimentally-infected koi were sorted into three populations with low, moderate or high prevalence levels of SVCV (n = 269 fish in total). Koi kidney tissues were tested using Q2N and Q1G and for the VI assay, pools of kidney, spleen and gill tissues were used. All samples were blinded and analyzed in one laboratory. The ML and Bayesian approaches successfully estimated the diagnostic accuracy of the 3 tests with the exception of 1 ML model. The estimates were consistent across the two frameworks. The DSe estimates were higher for Q1G (>98 %) and Q2N (>96 %) compared to VI (>60 %). The DSp of all three tests varied by 12-15 % (79-91 % for Q1G, 79-94 % for Q2N and 81-97 % for VI) across same-fish samples revealing the potential range in test performance for one sample. The 3 fish populations had distinct SVCV prevalence levels estimated at 0-3 % (low), 70-73 % (moderate) and 95-96 % (high). The Bayesian covariance models revealed minor DSe dependence between Q1G and Q2N. The results suggested that SVCV diagnostic tests Q2N and Q1G are suitable for use as diagnostic assays and are fit for presumptive diagnosis, surveillance, and certification of populations or individuals as SVCV free.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Rhabdoviridae , Viremia/veterinária , Animais , Teorema de Bayes , Carpas/virologia , Técnicas de Cultura de Células , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/virologia , Análise de Classes Latentes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Infecções por Rhabdoviridae/diagnóstico , Infecções por Rhabdoviridae/epidemiologia , Infecções por Rhabdoviridae/veterinária , Sensibilidade e Especificidade , Viremia/diagnóstico
17.
Viruses ; 13(4)2021 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-33919549

RESUMO

Infectious Hematopoietic Necrosis Virus (IHNV) infects juvenile salmonid fish in conservation hatcheries and aquaculture facilities, and in some cases, causes lethal disease. This study assesses intra-specific variation in the IHNV susceptibility of Chinook salmon (Oncorhynchus tshawytscha) in the Columbia River Basin (CRB), in the northwestern United States. The virulence and infectivity of IHNV strains from three divergent virus genogroups are measured in four Chinook salmon populations, including spring-run and fall-run fish from the lower or upper regions of the CRB. Following controlled laboratory exposures, our results show that the positive control L strain had significantly higher virulence, and the UC and MD strains that predominate in the CRB had equivalently low virulence, consistent with field observations. By several experimental measures, there was little variation in host susceptibility to infection or disease. However, a small number of exceptions suggested that the lower CRB spring-run Chinook salmon population may be less susceptible than other populations tested. The UC and MD viruses did not differ in infectivity, indicating that the observed asymmetric field prevalence in which IHNV detected in CRB Chinook salmon is 83% UC and 17% MD is not due to the UC virus being more infectious. Overall, we report little intra-species variation in CRB Chinook salmon susceptibility to UC or MD IHNV infection or disease, and suggest that other factors may instead influence the ecology of IHNV in the CRB.


Assuntos
Suscetibilidade a Doenças/veterinária , Doenças dos Peixes/virologia , Vírus da Necrose Hematopoética Infecciosa/patogenicidade , Infecções por Rhabdoviridae/epidemiologia , Infecções por Rhabdoviridae/veterinária , Rios/virologia , Salmão/virologia , Animais , Aquicultura , Suscetibilidade a Doenças/virologia , Doenças dos Peixes/epidemiologia , Genótipo , Vírus da Necrose Hematopoética Infecciosa/classificação , Vírus da Necrose Hematopoética Infecciosa/genética , Noroeste dos Estados Unidos/epidemiologia , Filogenia , Prevalência , Virulência
18.
Viruses ; 13(2)2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513882

RESUMO

Australian bat lyssavirus (ABLV) was first described in 1996 and has been regularly detected in Australian bats since that time. While the virus does not cause population level impacts in bats and has minimal impacts on domestic animals, it does pose a public health risk. For this reason, bats are monitored for ABLV and a national dataset is collated and maintained by Wildlife Health Australia. The 2010-2016 dataset was analysed using logistic regression and time-series analysis to identify predictors of infection status in bats and the factors associated with human exposure to bats. In common with previous passive surveillance studies, we found that little red flying-foxes (Pteropus scapulatus) are more likely than other species to be infected with ABLV. In the four Australian mainland species of flying-fox, there are seasonal differences in infection risk that may be associated with reproductive cycles, with summer and autumn the seasons of greatest risk. The risk of human contact was also seasonal, with lower risk in winter. In line with other studies, we found that the circumstances in which the bat is encountered, such as exhibiting abnormal behaviour or being grounded, are risk factors for ABLV infection and human contact and should continue be key components of public health messaging. We also found evidence of biased recording of some types of information, which made interpretation of some findings more challenging. Strengthening of "One Health" linkages between public health and animal health services at the operational level could help overcome these biases in future, and greater harmonisation nationally would increase the value of the dataset.


Assuntos
Quirópteros/virologia , Monitoramento Epidemiológico/veterinária , Lyssavirus , Infecções por Rhabdoviridae/veterinária , Animais , Austrália/epidemiologia , Quirópteros/classificação , Feminino , Humanos , Masculino , Saúde Única , Infecções por Rhabdoviridae/epidemiologia , Infecções por Rhabdoviridae/transmissão , Infecções por Rhabdoviridae/virologia , Fatores de Risco , Estações do Ano , Especificidade da Espécie , Zoonoses Virais
19.
Viruses ; 13(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466539

RESUMO

Bats, the second largest order of mammals worldwide, harbor specific characteristics such as sustaining flight, a special immune system, unique habits, and ecological niches. In addition, they are the natural reservoirs of a variety of emerging or re-emerging zoonotic pathogens. Rhabdoviridae is one of the most diverse families of RNA viruses, which consists of 20 ecologically diverse genera, infecting plants, mammals, birds, reptiles, and fish. To date, three bat-related genera are described, named Lyssavirus, Vesiculovirus, and Ledantevirus. However, the prevalence and the distribution of these bat-related rhabdoviruses remain largely unknown, especially in China. To fill this gap, we performed a large molecular retrospective study based on the real-time reverse transcription polymerase chain reaction (RT-qPCR) detection of lyssavirus in bat samples (1044 brain and 3532 saliva samples, from 63 different bat species) originating from 21 provinces of China during 2006-2018. None of them were positive for lyssavirus, but six bat brains (0.6%) of Rhinolophus bat species, originating from Hubei and Hainan provinces, were positive for vesiculoviruses or ledanteviruses. Based on complete genomes, these viruses were phylogenetically classified into three putative new species, tentatively named Yinshui bat virus (YSBV), Taiyi bat virus (TYBV), and Qiongzhong bat virus (QZBV). These results indicate the novel rhabdoviruses circulated in different Chinese bat populations.


Assuntos
Quirópteros/virologia , Genoma Viral , Filogenia , Infecções por Rhabdoviridae/veterinária , Rhabdoviridae/classificação , Animais , Encéfalo/virologia , China/epidemiologia , Estudos Retrospectivos , Rhabdoviridae/isolamento & purificação , Infecções por Rhabdoviridae/epidemiologia , Infecções por Rhabdoviridae/virologia , Saliva/virologia , Vesiculovirus/classificação
20.
BMC Vet Res ; 16(1): 482, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33302915

RESUMO

BACKGROUND: Palearctic bats host a diversity of lyssaviruses, though not the classical rabies virus (RABV). As surveillance for bat rabies over the Palearctic area covering Central and Eastern Europe and Siberian regions of Russia has been irregular, we lack data on geographic and seasonal patterns of the infection. RESULTS: To address this, we undertook serological testing, using non-lethally sampled blood, on 1027 bats of 25 species in Bulgaria, the Czech Republic, Poland, Russia and Slovenia between 2014 and 2018. The indirect enzyme-linked immunosorbent assay (ELISA) detected rabies virus anti-glycoprotein antibodies in 33 bats, giving an overall seroprevalence of 3.2%. Bat species exceeding the seroconversion threshold included Myotis blythii, Myotis gracilis, Myotis petax, Myotis myotis, Murina hilgendorfi, Rhinolophus ferrumequinum and Vespertilio murinus. While Myotis species (84.8%) and adult females (48.5%) dominated in seropositive bats, juveniles of both sexes showed no difference in seroprevalence. Higher numbers tested positive when sampled during the active season (10.5%), as compared with the hibernation period (0.9%). Bat rabies seroprevalence was significantly higher in natural habitats (4.0%) compared with synanthropic roosts (1.2%). Importantly, in 2018, we recorded 73.1% seroprevalence in a cave containing a M. blythii maternity colony in the Altai Krai of Russia. CONCLUSIONS: Identification of such "hotspots" of non-RABV lyssavirus circulation not only provides important information for public health protection, it can also guide research activities aimed at more in-depth bat rabies studies.


Assuntos
Quirópteros/virologia , Lyssavirus/isolamento & purificação , Infecções por Rhabdoviridae/epidemiologia , Animais , Anticorpos Antivirais/sangue , Cavernas , Ecossistema , Europa (Continente)/epidemiologia , Feminino , Masculino , Federação Russa/epidemiologia , Estações do Ano , Estudos Soroepidemiológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...